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Symbol manipulation by computer was used to carry out the analytic operations 
leading to the evaluation of higher-order dielectric functions connected with electro- 
static modes in hot plasmas. Application was made to mode-mode coupling between 
amplifying waves in a beam-plasma system. The basic input data were the Vlasov- 
Poisson equations. A perturbation calculation was carried out to fourth order in terms 
of an unspecified zeroth order distribution function. The analytic results were then 
converted automatically to FORTRAN statements in terms of the plasma dispersion 
function. The third-order dielectric function was evaluated numerically for the purpose 
of comparison with the experimental results of Carr et al. on mode-mode mixing. 

PL/l-FORMAC was the programming medium used for the symbol manipulation. 

1. INTRODUCTION 

Mode mixing via nonlinear processes is a well-known phenomenon in plasma 
physics [2]. One approach to its theoretical treatment is a perturbative expansion 
of the Vlasov equations in powers of the electric field strength. This paper describes 
a method for automating this type of perturbative expansion; we have carried 
it out to fourth order. Further, we discuss the generation of a program for numerical 
evaluation of these results. The specific impetus for these calculations was the 
results of Carr et al. [l] on mode coupling in an unstable medium. Fig. 1 shows 
the essential result of this experiment. It is to be noted that the amplitudes of the 
generated sidebands appear to decrease logarithmically with the order of the 
sideband. One purpose of this work was to investigate whether or not this behavior 
could be attributed to some dominant contribution in each of the odd-order 
dielectric functions even though the experiment involves magnetized plasma 
behaving quite nonlinearly. At the same time we developed (to the extent discussed 
below) an automatic programming system to expedite calculations of this nature. 
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FIG. 1. Experimental results on wave-wave mixing. 

The symbol manipulation programs carry out the following analytic steps: 

(1) Perturbation expansion of the Vlasov-Poisson equations both in implicit 
and explicit form. 

(2) Conversion of integrals over the velocities into appropriate combinations 
of plasma dispersion functions by use of integration by parts and partial fraction 
expansion. 

(3) The generation of a FORTRAN code for the numerical evaluation of 
frequently occurring expressions. 

In the next section we briefly delineate the problem in physical and mathematical 
terms. The symbolic programs for carrying out the perturbation expansion are 
discussed in Section 3. The analytic results obtained by symbolic manipulation are 
discussed in Section 4. We present the solutions in a form in which no specification 
of the zeroth order distribution function is made at this point; in this sense the 
results are general. In Section 5, we describe the conversion of the symbolic output 
into FORTRAN statements and the numerical evaluation of the third-order 
dielectric function. The basic programs were written to have a wider range of 
applicability than merely the specific problem treated here. These programs 
include ORDERS [3], which performs ordering of differential equations, and 
REPLACE, which substitutes lower-order results for higher-order equations. The 
programming medium used for the symbolic manipulation was PL/l-FORMAC 
141. 

2. DESCRIPTION OF PROBLEM 

We consider a hot plasma (single species) occupying a semi-infinite region of 
space. There is a beam of electrons entering the plasma. In a limited region of 
space about the nearer boundary the plasma (and beam) electrons are modulated 
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in density and/or velocity by an external source so as to excite electrostatic waves. 
This modulation has Fourier components at (at least) two different frequencies, 
which correspond to amplifying modes in the system. The system is immersed 
in a strong unidirectional, uniform magnetic field. 

The Vlasov equations for a one-dimensional collisionless electron plasma provide 
an adequate description of this model in which the positive charges are considered 
to form an immobile background with density n, . The relevant equations are [3] 
(in original form): 

aE 
ax= s 

fdu (1) 

We apply the Laplace transform in space and Fourier analyze in time to obtain 

+ikE = 1 f”dv + EB(w) (1’) 

-i(o - kv)f(w, k) + iIT 3 

wherein z, is the velocity variable parallel to magnetic field, fO is the part of the 
distribution function that is independent of time, f = f(x, u, t) is the rest of the 
distribution function, and E = E(x, t) is the self-consistent electric field. The 
quantities marked with a subscript B represent the Fourier transform of the 
boundary values and the twiddles indicate the double transform. For simplicity 
we have written the equations in terms of reduced variables in which the Debye 
wavelength, the plasma frequency wg , and the electron thermal velocity V,, are 
all unity. The electric field is measured in units of mw,V,,/e, wherein m and e are 
the electron mass and charge, respectively. The distribution functions are measured 
in units of the average density divided by the thermal velocity. Finally, we have 
introduced a formal ordering parameter p, whose actual value is 1. As discussed 
in further detail below, the functionf, is a prescribed function while the first-order 
electric field denotes the linear response of the medium to the excitation. 

We assume that the electric field E, and the distribution functionf, each can be 
expanded in a power series in /3, thus 

E = 2 P”E(n) (3) 
1 



DERIVATION OF DISPERSION RELATIONS 25 

The boundary terms contain first-order terms. Inserting these expansions into 
Vlasov set ((1’) and (2’)) we are led to the following equations for the terms of 
different orders of coupling 

ik8(n) = j-f(n) dv + S,,,E, 

-i(w - kv)f(n) + E(n) 2 

- ~fB~n,l - - 11 c ,I, z (s, co’, k’, 2;) E(n - s, w - w’, k - k’) dw’ dk’. (6) 

The first-order electric field is a functional of the boundary values fB and EB , 
which are to be specified; this first-order field is the linear response of the medium 
to the modulation and can be written as 

E(l) = c &bm(W expb(k,x - WJ)I- 
I 

(7) 

The values of o, in our particular application in which there are two modulating 
signals are -&J, and -J+J~ . The (complex) values of k, are determined by the 
solution of the dispersion relation 

In the actual calculation we performed we took fB to be zero and EB # 0. The 
results of the calculation are then a prediction of the value of E(n) in terms of the 
lowest-order distribution function f. , and the parameters of the excitation such 
as the urn’s and the Elo(w,J’s. 

3. AUTOMATED PERTURBATION EXPANSION 

In this section we shall discuss the two programs ORDER and REPLACE, 
which carry out the perturbation expansion of the Vlasov-Poisson equations. 
The programs that convert the symbolic results into FORTRAN statements are 
discussed briefly in Section 5. 

The program ORDERS [3] accepts as data (differential) equations and infor- 
mation indicating the ordering (or orderings) of parameters and dependent 
variables in these equations. Its operation is then as follows: (a) It forms an 
expansion of the dependent variables in powers of the ordering parameter; (b) It 
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segregates the results according to powers of the ordering parameter; and (c) Under 
user control, it carries out the transformations 

a 
at -+ -iw; 

a - -+ ik. 
ax 

In performing the transformations just mentioned, products of dependent 
variables are transformed according to the usual convolution rule 

a(x, t) - b(x, t) + ss a”(~, , k,) &(<w - w1 , k - k,) dw, dk, , 

In the internal (that is, within the program) representation of the integrals over k, 
and w1 is implicit. Further details can be found in the first paper of this series. 

The ordering operation is actually rather trivial in this case and we have presented 
the results for different orders in Eqs. (5) and (6). However, these equations give 
the results in implicit rather than explicit form. The next step, performed by 
REPLACE, proved to be more difficult. This was the substitution of the lower-order 
results into the higher-order equations in order to make these latter results explicit 
functions of o and k. 

Prior to substitution into the nth order terms, it is necessary to solve the nth order 
results for E(N) and F(N). As a result one finds that E and F of order N can be 
expressed as a sum of nonlinear terms, each of which has one factor F(I) and a 
factor E(J) where I + J = N. The process of substitution is somewhat more 
complicated than the mere replacement of one expression by another since the 
correct frequency and wavenumber dependence of the terms must be maintained. 
(One must remember that E(J) and F(I) in turn consist of contributions from 
lower-order terms.) We have used the following method on a term by term basis: 

(1) A table was made of the order in the perturbation expansion of F and 
of E in each term. 

(2) Prior to any substitutions, the frequency and wavenumber variables 
in each term are changed to an appropriate sum of such terms. If the term is of 
order N and consists of the product of a term of F of order Nl and a term in E 
of order N - Nl, then the frequency argument of F is made SUMy(1, Nl) and 
that of E is made SUMW(N1 + 1, N). Here SUMWjJ,L) = CrcJ wi , which 
may be a single term or several. It is understood that x1 wI = w, where w  is the 
frequency argument of F(N) and of E(N). 

(3) At the time of substitution of a term of order M (such as has been just 
described) into a term of order N > M, two possibilities occur for the form of 
the term in which substitutions are to be made. 
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It is of the form F.(SUMW(l, M)) * E.(SUMW(M + 1, N)) and we are 
substituting for F. No change need be made. 

It is of the form F.(SUMW(l, N - M), N - M) * E. (SUMW(N - M + 1, 
N), M) and we are substituting for E. In this case we must augment the frequency 
and wavenumber arguments of the explicit form of E. (SUMW(1, M), M) by 
N - M before substituting. In other words, in the term being substituted, any 
frequency argument such as W(Z) would become W(Z + N - M) just prior to 
substitution. 

An example will serve to illustrate this. The fourth-order distribution 
function contains a term proportional to E(2)(L?f&1)(2) where the numbers 
denote the order of the term. More explicitly, this term can be written as 
E(SUMW(3, 4), 2)(@/&)(SUMW(l, 2), 2). The second-order electric field itself 
consists of terms that depend on W(1) and W(2). Before substituting these terms 
for E(2) the frequency arguments W(1) and W(2) must be changed to W(3) and 
W(4). 

4. SYMBOLIC MANIPULATION ANALYTIC RESULTS 

The form of the symbolic output produced by the combined action of the 
programs ORDERS and REPLACE is illustrated by the following term in the 
third-order distribution function 

‘TERMS& 1, 3) = EPS. (SUMW. (2, 3), K. (2, 3)) ** (-1) * K. (2, 3) ** (-1) 

or EMO. (SUMW. (3, 3)) * DV. (-EMO. (SUMW. (1, 1)) 

* DV. (FOO. (NULL, V, 0), V) * (- V t K. (1,l) * #Z 

+ SUMW. (1, 1) * #Z) ** (-1), V) * DV. (-EMO. 

(SUMW. (2,2)) * DV. (FOO. (NULL, VOO4,0), VOO4) 

* (- VOO4 * K. (2,2) x #Z + SUMW. (2,2) * #Z) 

** (- l), vOO4) * SUM. (VOO4) * (- VOO4 * K. (2,3) * #Z 

+ SUMW. (2, 3) * #Z) ** (-1) * (-V c K. (1, 3) * #Z 

+ SUMW. (1,3) * #Z) ** (-1) t #I’. (8) 

The conventions and symbols used in this result are the subject of this section. 
First the indices on the left-hand sides represent the term number, variable number, 
and order of approximation respectively, so that the term above is the first term 
of the first dependent variable (f is the distribution function) in the third order. 

The quantities SUMW. (Z, .Z) and K. (L, M) represent Cf=, wi and CE, kc, 
respectively. Throughout we use the convention that the sum of all frequencies 
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from the first to the Nth is w; a similar convention for the wavenumber holds. 
In the Nth order there are N summations over the possible frequencies of modu- 
lation; these are implicit in the equation above. If we adhere to the example given 
in Section 2 in which there are two modulation frequencies w, and wb , then each 
of the wi’s range over the four values w, , -w, , wb , -wg . The formulas are 
general enough to take into account any finite number of discrete modulating 
frequencies; one need only extend the summations in the obvious way. The function 
denoted by EPS is the first-order permittivity of plasma and beam and is given by 
the familiar expression 

The distribution functionf, that we used was 

exp( - 0”) 
"fil = 7T1/2 + WB2@ - VB) 

(9) 

wherein the uB2 and v, characterize the beam density and beam velocity. Also #l 
is the FORMAC representation of the imaginary unit and FOO = f. is the zeroth 
order distribution function. The EM0 represent the first-order electric field 
Fourier transforms corresponding to those given in Eq. (7). 

Finally two special conventions must be explained. The presence of a factor of 
the form SUM. (variable) as in SUM. (VOO4) indicates that there is an integration 
over the variable VOO4 such that all terms dependent on VOO4 are in the integrand 
of that integration which runs from minus infinity to plus infinity. The function DV 
indicates that a derivative of its first argument with respect to its second argument 
is to be taken. This was used instead of the ordinary FORMAC DERIV function 
since the actual process of differentiation was to be deferred as, in fact, the sub- 
sequent processing of these terms involved integration by parts prior to substitution 
of the form of the distribution function. 

5. SYMBOL MANIPULATION AND NUMERICAL EVALUATION 

We have employed the techniques of symbolic manipulation further to convert 
the results presented in the last section into the form of FORTRAN statements. 
The integrals over the velocity variables were transformed into algebraic combi- 
nations of the plasma dispersion functions [5] and beam contributions following 
an expansion into partial fractions. For example, Fig. 2 lists the FORTRAN-deck 
produced for the evaluation of int 2 defined below in Eq. (18). 
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TERM(l) = WBZ*(-XAFtG(1) + VB)**(-3 )*(-XAK(2) + VB)**(-1 )*2. 
TER"l(2) = WB2*(-xARG(l) + VB)**(-2 )*(-X?%(Z) + VB)**(-2 ) 
TEFM(3) = xAK(1)*zFc (xARG(l))*(~(l)-xARG(2))**(-2 )*2. 
'IEW(4) = xARG(l)*(xARG(l)-xARG(2))**(-1 )*4. 
TEFM(5) = -XARG(Z)*ZFC (~G(Z))*(xARG(l)-xARG(2))**(-2 )*2. 
!I'ERMfM(G) = -2FC (~G(l))*(xARG(1)-~(2))**(-1 )*2. 
'IERM(7) = X?.RG(1)**2*ZFC (~(l))*(xFw;(l)-xARG(2))**(-1 )*4. 

mAL= 7 
SW0 
w1001=1,mYn& 

100 swsw !rEFM(I) 
rm2=suM 

FIG. 2. FORTRAN statements produced for the evaluation of INT2 (versus Eq. (29)). 

The actual computations carried out were limited to the evaluation of the first 
sidebands (upper and lower) as determined by the third order dielectric function. 
The results are tabulated in Table I in which we show the variation of the 
amplitudes of the upper and lower sidebands as a function of one modulating 
frequency while the other one is held at 0.97 of the plasma frequency. The quantity 
listed is the ratio of (eE(“l/mw,I/,,) to the appropriate product of (three) first-order 
fields. 

TABLE I 

Relative Magnitudes of Third-Order Fields for WB/W~ = 0.1 and V,/ V, = 5.0 

%d4i% E’3’(2W, - co*) E’3’(2w, - w,) 

0.88 2.10 2.23 
0.90 2.06 2.31 
0.92 2.01 2.31 
0.94 1.96 2.32 
0.96 1.93 2.14 

The actual fields are to be determined by means of inverse Fourier (w) and 
Laplace (k) transformations. The integrals over the frequency variables are 
trivial because of the presumed sharpness (&function) of the modulation. The 
integrals over the wavenumber variables involve the residue calculus. 

We can write the form of the third-order terms as 

E3h 0 = c c c j-j-/ dk, dk, dk,F&, 7 k, 3 k3) 
&) J$) ,$ 

. exp[i(kk’ + kz’ + k:‘) . x - i(w?’ + WE’ + ~2’) t] 

- fi -%&n(i), ~nz(i>> (11) 
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wherein F(k, , k, , k3) is given in detail by Eqs. (13)-(22) below and where EM 
denotes the quantity given by Eq. (7) (the Fourier transform of the first-order field) 
with the obvious difference that its w-dependent &functions have been integrated 
out. Inspection of the terms indicates that the poles of Laplace transforms occur 
at the positions where the plasma-beam dispersion function vanishes. 

There are, potentially, two distinct types of contribution; the first occurs at the 
poles of the dielectric functions explicitly indicated in the formulas by the E 
functions and the second occurs at the poles of the function EM . These latter 
functions, it may be recalled, represent the transform of the linear response of the 
system to the modulation. In the calculation presented here, therefore the second 
group of terms might be described as the linear response of the system to combi- 
nation frequencies while the first group represents the driven response to the 
first-order fields. 

The experimental results of Carr et al. indicate that the base waves were close 
to saturation levels before the sidebands appeared above noise level, indicating 
that the response at these sideband frequencies was driven by the main waves. 

Furthermore, while it is theoretically possible to assume that the base waves 
possess lower growth rates than the sideband waves, in the actual experiments 
trapping and other nonlinear effects would manifest themselves before the fast 
growth rate could make up for the low initial level. In addition, the amplified 
noise at the sideband frequencies would complicate the interpretation of the 
experiments. Therefore, we used only the poles of the EM functions. 

In any event, granted the assumptions stated above, the electric fields in third 
order will depend only on the first-order electric field strengths. The analytic 
results obtained by means of the ORDERS and the REPLACE programs can now 
be converted into a FORTRAN program for the numerical evaluation of the 
dielectric functions. The zeroth order distribution appropriate to the beam-plasma 
system under discussion is given by 

where vB is the beam velocity, and n3, and nB are the plasma and beam number 
density, respectively. Consequently, the order dielectric functions for this system 
are combinations of rational functions and plasma dispersion functions. 

We shall give an outline of this conversion. First, recall that the derivatives 
were not carried out explicitly. There are then three terms in F that we must 
calculate 

term(l) = 41) * int 2(A3 , h> * int 2(vL3 , dz2> 

tern-Q) = ~(2) * int 3(9b, 4k, 94d 

term(3) = c(3) * int 2<h , &J * int 2(h , 9L) 

(13) 

(14) 

(15) 
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in which we have used quantities defined as follows 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

Each of the integrals given above was translated into a FORTRAN subroutine 
in the following steps using FORMAC: 

(i) Integration by parts was carried out to the point at which thefo function 
was no longer differentiated. 

(ii) The zeroth order distribution function was, as given in Eq. (22), 
substituted for f. . 

(iii) The S-function terms were evaluated easily and the other terms were 
expanded in partial functions. 

(iv) Finally, the terms still to be integrated were converted to various 
combinations of the plasma dispersion function and its derivatives. Use of the 
functional equation Z’(z) = -2(zZ(z) + 1) was made an option. 

In connection with the strictly numerical evaluation (i.e., the FORTRAN 
program) the following problem arose. In making the partial fraction expansions 
the possibility that quantities having distinct symbolic names could have identical 
numerical values was not taken into account. Since 

1 1 a 1 -- 
v-a v-b -T=+gjZF 

provision for this eventuality was made. 
We carried out numerical differentiation in the program by allowing each wnz(l) 

to be replaced by urn(l) + I . 10-6, 1 = 1, 2, 3. 

581/20/1-3 
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6. SUMMARY AND CONCLUSIONS 

We have described a group of symbol manipulation programs that start with the 
differential equations governing a physical system (in this case the Poisson-Vlasov 
set) and eventually produce portions of the computer code needed for the evaluation 
of higher order effects. 

It was stated that the original goal was to isolate, if possible, the dominant 
contributions to the wave-wave mixing process. However, the numerical values 
obtained in third-order for field amplitudes of the first upper and lower sidebands 
resulted from cancellations between numbers of larger magnitude. 
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